4,832 research outputs found

    Yang-Mills theory constructed from Cho--Faddeev--Niemi decomposition

    Full text link
    We give a new way of looking at the Cho--Faddeev--Niemi (CFN) decomposition of the Yang-Mills theory to answer how the enlarged local gauge symmetry respected by the CFN variables is restricted to obtain another Yang-Mills theory with the same local and global gauge symmetries as the original Yang-Mills theory. This may shed new light on the fundamental issue of the discrepancy between two theories for independent degrees of freedom and the role of the Maximal Abelian gauge in Yang-Mills theory. As a byproduct, this consideration gives new insight into the meaning of the gauge invariance and the observables, e.g., a gauge-invariant mass term and vacuum condensates of mass dimension two. We point out the implications for the Skyrme--Faddeev model.Comment: 17pages, 1 figure; English improved; a version appeared in Prog. Theor. Phy

    Solving the Schwinger-Dyson Equations for Gluodynamics in the Maximal Abelian Gauge

    Full text link
    We derive the Schwinger-Dyson equations for the SU(2) Yang-Mills theory in the maximal Abelian gauge and solve them in the infrared asymptotic region. We find that the infrared asymptotic solutions for the gluon and ghost propagators are consistent with the hypothesis of Abelian dominance.Comment: 3 pages, 1 figure; Lattice2003(topology

    Single and Double Universal Seesaw Mechanisms with Universal Strength for Yukawa Couplings

    Get PDF
    Single and double universal seesaw mechanisms and the hypothesis of universal strength for Yukawa couplings are applied to formulate a unified theory of fermion mass spectrum in a model based on an extended Pati-Salam symmetry. Five kinds of Higgs fields are postulated to mediate scalar interactions among electroweak doublets of light fermions and electroweak singlets of heavy exotic fermions with relative Yukawa coupling constants of exponential form. At the first-order seesaw approximation, quasi-democratic mass matrices with equal diagonal elements are derived for all charged fermion sectors and a diagonal mass matrix is obtained for the neutrino sector under an additional ansatz. Assuming the vacuum neutrino oscillation, the problems of solar and atmospheric neutrino anomalies are investigated.Comment: 13 pages, LaTeX; a reference adde

    Renormalizable Abelian-projected effective gauge theory derived from Quantum Chromodynamics II

    Full text link
    In the previous paper\cite{KS00b}, we derived the Abelian projected effective gauge theory as a low energy effective theory of the SU(N) Yang-Mills theory by adopting the maximal Abelian gauge. At that time, we have demonstrated the multiplicative renormalizability of the propagators for the diagonal gluon and the dual Abelian anti-symmetric tensor field. In this paper, we show the multiplicative renormalizability of the Green's functions also for the off-diagonal gluon. Moreover we complement the previous results by calculating the anomalous dimension and the renormalization group functions which are undetermined in the previous paper.Comment: 11 pages, 3 figure

    Approximate Sum Rules of CKM Matrix Elements from Quasi-Democratic Mass Matrices

    Get PDF
    To extract sum rules of CKM matrix elements, eigenvalue problems for quasi-democratic mass matrices are solved in the first order perturbation approximation with respect to small deviations from the democratic limit. Mass spectra of up and down quark sectors and the CKM matrix are shown to have clear and distinctive hierarchical structures. Numerical analysis shows that the absolute values of calculated CKM matrix elements fit the experimental data quite well. The order of the magnitude of the Jarlskog parameter is estimated by the relation J2(mc/mt+ms/mb)Vus2Vcb/4|J| \approx \sqrt{2}(m_c/m_t + m_s/m_b)|V_{us}|^2|V_{cb}|/4.Comment: Latex, 15 pages, no figure

    Nuclear Excitations Described by Randomly Selected Multiple Slater Determinants

    Get PDF
    We propose a new stochastic method to describe low-lying excited states of finite nuclei superposing multiple Slater determinants without assuming generator coordinates a priori. We examine accuracy of our method by using simple BKN interaction.Comment: Talk at International Symposium on Correlation Dynamics in Nuclei, Tokyo, Japan, 31 Jan.-- 4 Feb. 200
    corecore